
Improved algorithm selection in the hyper-agent

approach to General Video Game Playing

Quintana Pelayo, Guillermo; Clappers, Lisa; Oberlies-Rodrigues, Jory;
Rao, Chinmay; Romita, Alessio & Scholer, Tom

AI & DSDM Master Students
Data Science and Knowledge Engineering

Maastricht University
g.quintanapelayo, l.clappers, j.oberlies-rodrigues, c.rao,

a.romita, t.tomfernandgeorges @student.maastrichtuniversity.nl

January 22nd 2020

Abstract

General Video Game Playing (GVGP) [1] is a sub-
field in Artificial Intelligence (AI) research that aims
to create proactive programs capable of playing many
different types of video games successfully. In this
research project, rather than building a single gen-
eral video-game playing agent, we attempt to further
the research along the lines of the ”hyper-agent” ap-
proach. This involves having an algorithm selecting
an agent from a collection of agents, such that the
most suitable to play a given specific video game does
play that game. More specifically, we perform game
categorization to classify games into different com-
putational genres based on certain useful features.
Our objective is to find out which game features are
relevant with respect to agents’ performance and to
analyze the quality of game categorization obtained
using these features.

This project is part of the Master Research Project
from the Faculty of Data Science and Knowledge En-
gineering Master program of the Maastricht Univer-
sity, and with it, we aim to create a hyper-agent for
GVGP for single player video games.

Keywords: hyper-agent, GVGP, GVGAI, game
classification

1 Introduction

General Video Game Playing involves creating a
proactive program called an agent that can success-
fully play many different video games, in particular

games that are unknown to the agent. This is in con-
trast to designing an algorithm to work optimally on
a single game known to the designer beforehand.

To facilitate development in GVGP, the General
Video Game AI (GVGAI) framework [2] was intro-
duced to serve as a general framework for game-based
testing of artificial intelligence methods. The video
games included in the GVGAI framework are clas-
sic 2D arcade-style games since these are relatively
simple, interactive enough and require real-time re-
sponse. In addition to the framework, the GVGAI
competition [3] aims to benchmark the general game-
playing AI algorithms on a set of games unknown to
the contenders.

The objective of GVGP is the creation of a gen-
erally intelligent game-playing agent. Solving the
GVGP problem would take the AI research commu-
nity a step closer to the truly general solver, an al-
gorithm that could perform a wide spectrum of real-
world tasks. The GVGAI competition consists of dif-
ferent tracks with a variety of objectives (two players
learning, planing, etc.). The relevance of our work
lies on improving the existing methods in GVGP,
specifically in the Single-player Planning track of GV-
GAI. This is due to the complexity of the games
that involve several players and also due to time con-
straints for the project itself.

Several efforts have been made to create success-
ful agents for this task. Common successful search
strategies that have been applied to GVGP are
Monte-Carlo Tree Search (MCTS) [4, 5, 6], or the N-
Tuple Bandit Evolutionary Algorithm (NTBEA) [7].

1



However, the objective of our work moves away from
these past attempts in the sense that we aim to cre-
ate a hyper-agent capable of selecting the most suit-
able agent among all the already existing ones for any
game that can be presented to it. This means that we
did not develop any new agents like the ones stated
in section 3. Instead, we collected already existing
agents submitted in the past GVGAI competitions
(on the single-player planning track) and worked with
them to create our selector using the hyper-agent ap-
proach. Thus, we aim to know if the performance of
a General Video Game Playing hyper-agent can be
improved by improving the game classification used
by the hyper-agent.

Furthermore, as will be further explained later, we
explored the influence of adding new game features
(on which the classification is based) on the perfor-
mance. To accomplish this task, we used two specific
clustering algorithms: K-means and Fuzzy-ART.

The paper is structured as follows. First, a de-
scription of general video game playing and the
GVGAI framework as well as some principles of
hyper-heuristics and algorithm selection are given.
Then, we describe our methodology: which con-
trollers (agents) were used for the hyper-agent, how
we extracted features to use and collected data on
controller performance, and we describe the classi-
fiers used to predict the best controllers. Following
this we explain the results of using these classifiers
and finally we give the conclusions derived from the
conducted experiments and describe further work and
research that could be done.

2 Motivation

The defining feature of hyper-heuristics is that they
operate on a search space of heuristics rather than
directly on a search space of problem solutions. This
property of hyper-heuristics provides the potential for
increasing the level of generality of search methodolo-
gies [8].

Hyper-agent methods are expected to have better
performance than single agents. Nevertheless, it is
possible that we do not obtain a better performance
than the best existing agent. Improving the classifi-

cation requires using higher quality features and the
algorithms that use these features. As it will be men-
tioned in section 3, a similar approach to the one that
we are proposing here has already been tested and,
even though the results were not good as expected,
they significantly improved the overall scores. That
significant improved performance is one of the main
reasons why we still bid for this approach, because we
see a lot of potential in applying this methodology to
General Video Game Playing.

3 Previous work

In order to better understand the background sur-
rounding our research it is important to look at some
of the approaches that have already been tested, both
as a single agent and as a higher level view such as
the one that this projects discusses.

General Video Game Playing has been deeply re-
searched for several years now and it has too many
tracks to be discussed here. Since this history lies
out of the scope of our project, the previous work
discussed here focuses on the approaches considered
interesting and on which we founded the base of our
research.

The GVGAI framework contains several agents
aimed at demonstrating how a controller can be cre-
ated for the single player track of the competition
[9]. It includes the most basic agents, like doNoth-
ing and onesteplookahead that rolls the model for-
ward for each one of the available actions in or-
der to select the one with the highest action value.
Without a doubt the methods that have been more
explored are Tree Search Methods, such as Monte-
Carlo Tree Search (MCTS), Open Loop Expectimax
Tree Search (OLETS) and multiple enhancements of
MCTS [4, 10, 11]. But some of these methods have
been proved to not being particularly strong when
it comes to playing very different games, one com-
mon outcome is that these agents perform on average
better on a certain type of game but not on a huge
amount of them.

In Mendes et al. 2016 [12] the authors present a
similar hyper-approach to the one presented here.
They describe the creation of a “hyper-agent” for

2



general video game playing that utilizes the strengths
of multiple individual controllers to play unseen
games better than any of them individually. This
hyper-agent uses an offline learning approach similar
to the one we followed. The final goal of this research
was to choose the best controllers to play each game
in real time. However, their work has some limita-
tions; for example it sometimes fails to select the best
agent for a game and other times it just selects the
less risky agent on average. Moreover, they conclude
that the developed hyper-agent significantly outper-
formed the winners of the 2014 and 2015 competitions
but also that there is a lot of room for improvement.
These results suggest that the use of hyper-heuristics
and algorithm selection may have an important role
in general video game playing and that it is a feasible
choice to perform further research.

4 Methodology

This section contains the process followed to collect
the game data necessary for our hyper-agent as well
as the game categorization that has been made with
this data. It also describes how each category got
assigned its best performing agent.

4.1 Data collection

Two types of data were collected and used to make
the hyper-agent; game performance data, how well
each selected agent does on each of the games, and
game features data, which describe each game by giv-
ing its features. How both of these kinds of data were
collected will be discussed here in turn.

Before performance data could be collected, the
agents that would be in the portfolio of the hyper-
agent were selected. In this work, the portfolio is
the collection of agents from which the hyper-agent
gets to choose. Five agents were selected from the
sample agents provided within the framework, and
five agents were selected that had competed in the
GVGAI contest and had performed well. Of the five
sample agents, there was one agent that served as
a non-intelligent comparison to the intelligent agents
(the DoNothing agent). The four other sample agents

were the agents classified in the framework as ad-
vanced. Only these advanced sample agents were cho-
sen because we believed advanced agents had a higher
chance of good performance. The other five agents
that make up the portfolio were the top five competi-
tors in the 2018 GVGAI tournament. These agents
were chosen because they had been shown to be able
to perform well. No agents from other years were
selected because of incompatibility with the frame-
work. For specific descriptions of all agents used, see
Table 1. Performance data was collected for these
ten agents.

Agent Description

DoNothing Does not take any action

SampleMCTS
Monte Carlo tree search
(MCTS)

SampleRS Random search

SampleRHEA
Rolling horizon evolutionary al-
gorithm

olets
Open Loop Expectimax Tree
Search

asd592

Combination of a genetic algo-
rithm (GA), map guidance to
a Main Objective and breadth
first search (BFS) for determin-
istic games

crazypet
A*, greedy path generation
through a GA and Monte Carlo
search

fanatax
Reinforcement learning using an
existing knowledge base

fraBOT
BFS for deterministic games,
MCTS for non-deterministic
games

NovelTS
Optimized iterated width algo-
rithm

Table 1: Agents in hyper-agent portfolio [13]

The performance data was collected by letting each
agent play each level of each game available in the
framework five times. Since each game has five levels,
that meant each game was played 25 times by every
controller. The amount of games won was summed

3



up, resulting in each game receiving a score of 0-25
with 0 indicating that the agent lost all of the simu-
lated games, and 25 indicating that it won all games.
This data was collected on various personal comput-
ers. We are aware that this makes the data collected
less robust, but splitting the computation was nec-
essary because of time constraints. It was also at-
tempted to collect all data through a server, which
would allow for faster and more robust data collect-
ing. However, because of circumstances outside of
our control, the server was made inaccessible and the
data was lost.

The second type of data that was collected, was
feature data. This was collected per game. The fea-
tures collected can be seen in Table 2. The features
that were collected were a combination of features
used by [14] and new features. Not all features of
[14] were used; only the features that seemed most
informative were included. Of the features shown in
Table 2, Can Use, Can Die, % of Win Conditions,
% of Lose Conditions, % Solid Sprites, % Harmful
Sprites, % Goal Sprites and Max Interaction Rules
were taken from this earlier research. Since the fea-
tures in [14] did not seem to predict performance
very well, new features were included and some fea-
tures were changed in meaning in order to make them
more informative. The new features extracted were
’Is Timeout Game’, ’Death by Environment’, ’Death
by Enemy’ and ’Is Puzzle’. These were not present
in the previous work. Furthermore, the feature ’Is
Survival Game’ was given a new meaning. The first
three of these features seemed to be meaningful ways
of splitting earlier features, while ’Is Puzzle’ would
possibly be a very informative feature. All of the fea-
tures were collected by hand, by going through the
VGDL files for all but two features. In the VGDL
files, the rules that govern that particular game and
which sprites are used are specified. Based on this in-
formation many of the features could be determined.
There were two features that could only be collected
by playing the games; ’Can Use’ and ’Is Puzzle’.

4.2 Game Categorization

Using the game feature dataset, we used multiclass
supervised learning to create a model for algorithm

Feature Description

Can Use
The agent can press the
space bar to interact
with the environment

Can Die
The agent can die by
colliding with another
sprite

Is Survival Game
The agent wins if a
timer runs out

Is Timeout Game
The agent loses if it does
not reach its goal before
a timer runs out

% of Win Conditions
% of terminal conditions
that are win conditions

% of Lose Conditions
% of terminal conditions
that are lose conditions

% Solid Sprites

% of sprite types that
do not interact with the
player or the environ-
ment

% Harmful Sprites

% of sprite types that
can harm the player if it
comes into contact with
them

% Goal Sprites
% of sprite types that
are goal sprites

Max Interaction Rules
Maximum amount of in-
teraction rules for one
type of sprite

Death by Environment
The agent can die by
walking into stationary
sprites

Death by Enemy
The agent can die by
colliding with moving
objects

Is Puzzle The game is a puzzle

Table 2: Selected features used to represent games.

selection using methods implemented in the Weka
machine learning software [15]. Similar to previ-
ous work [16, 17] clustering was performed first to
split the games into different categories and then
these clusters were used as labels (along with the

4



Figure 1: Heatmap representation of the performance of selected 10 agents (y-axis) in 81 discrete-physics
games of the single player planning track of GVGAI framework (x-axis). Darker cells correspond to better
performance.

feature data) to train a J48 Decision Tree. Based
on our analysis that will be discussed in the later
paragraphs, we identified the following six boolean
features that are most informative: ”Can Use”, ”Is
Survival Game”, ”Is Timeout Game”, ”Death by En-
vironment”, ”Death by Enemy” and ”Is Puzzle”. The
specifics of our approach are mentioned in the follow-
ing paragraphs.

4.2.1 Clustering stage

In [14], the authors used k-means for clustering
games. Here, we use two different clustering meth-
ods - k-means and Fuzzy ART - which resulted in two
sets of clusters. A total of 81 games, represented by
certain features, were used as input.

K-means requires the number of clusters to be
specified before running. To determine the optimal k,
we used the elbow method using the Within-Cluster-
Sum-of-Squares (WCSS) measure. The 81 games
were thus categorized into 5 clusters based on their
features. In order to check to what extent were these
features a good indication of controller performance,
we clustered the games represented by controller per-
formance into 5 clusters and created an overlap ma-
trix as shown in 2.

To check whether using a different clustering
method can improve the clustering quality, we used
an unsupervised learning algorithm called Fuzzy
ART[18]. Fuzzy ART has an architecture similar to
a two-layer neural network and uses fuzzy logic op-
erations to recognize patterns in the data and cat-

egorize similar data-points together, resembling the
clustering process. The number of categories are ini-
tialized to zero and grow as the training progresses.
A hyper-parameter called Vigilance, denoted as ρ, is
used to control the ”strictness” with which the al-
gorithm checks the inclusion of a data-point to each
category. If a given data-point doesn’t belong to any
of the existing categories, a new category is created
and the instance is put to it. With possible values of
vigilance parameter being in the range [0,1], higher
vigilance means more ”strict” checking and thus the
possibility of more categories being created. Using
a vigilance value of 0.5, we obtained 6 categories of
games based on their features. Again, to compare the
quality of these categories, we clustered the games,
represented by controller performance, into 6 clus-
ters using k-means and recorded the overlap matrix
shown in 3.

Figure 2: Overlap matrix for feature-based k-means
clusters v/s performance-based k-means clusters.
The colors represent the overlap, same as the num-
bers in the cells. Darker shade corresponds to better
overlap. These colors are only meant for reader’s con-
venience.

5



Figure 3: Overlap matrix for feature-based Fuzzy
ART categories v/s performance-based k-means clus-
ters

Overlap matrix in an ideal case would ”associate”
each feature-based cluster with a performance-based
cluster. The word ”associate” here means that for all
feature-based clusters (rows), there will be a unique
performance-based cluster (column) such that both
of their constituent games completely overlap (and
vice-versa), and the rest of the row-column combi-
nations have zero overlap. The significance of such
an ideal case lies in the fact that the features of a
game are good indicators of controller performance
and using this, one can explain why a particular con-
troller performs well on a particular game. On the
other hand, the overlap matrix of the worst possible
case will have all the games of any performance-based
cluster (column) being distributed uniformly over all
the feature-based clusters (rows).

In our case, the 5x5 overlap-matrix for k-means
clustering in 2 contains most of the games, grouped
by controller performance, in the performance-based
cluster 0. However, these games are distributed
across all the feature-based clusters with the maxi-
mum being concentrated in feature-based cluster 3.
As for the remaining part of the matrix, it is hard
to see any unique overlap between feature-based and
performance-based clusters. Moreover, the games in
column 4 are distributed almost uniformly over all
the rows which is not a good sign.

In the 6x6 overlap matrix for Fuzzy-ART categories
in 3, the performance-based cluster 4 contains major-
ity of the games which are distributed over different
feature-based clusters as in the k-means case. How-
ever, compared to k-means case, the distribution of
games in any performance-based cluster is distributed
less uniformly over the feature-based clusters even

though there are more clusters.

Figure 4: Decision tree built using K-means clusters

Figure 5: Decision tree built using Fuzzy-ART cate-
gories

In both the matrices, the performance-based clus-
ter containing the majority of the games represents
a class of ”hard” games where all controllers perform
poorly. The fact that this class contains so many
games in the first place indicates that there is a need
for controllers that can perform well in such games.

Figure 6 shows the same content as the ear-
lier heatmap except that the games are sorted and
grouped by their categories generated by k-means
and Fuzzy ART based on game features. In both
the cases in this figure, it can be observed that the
games (columns) with all white cells are distributed
across all the categories. These games are the so-
called ”hard” ones. Also, many other games with
identical controller performance are not grouped to-
gether, for example in the k-means case, the games
”Infection” and ”Intersection” are put into clusters 1
and 4 respectively despite their similar controller per-

6



formance values. This suggests that even though our
features are more informative than the ones used in
[14], they are still not a good indication of controller
performance.

4.2.2 Building the decision model

The two sets of feature-based clusters were then used
to build two J48 decision trees - one for k-means and
Fuzzy ART each. The decision trees were created
using the Weka machine learning software.

First, in order to check the quality of the game fea-
tures, five of the features from the previous work[14]
were used to cluster the games followed by creation
of the decision trees. These features were :“Can
Die”,“Can Use”,“Is Survival Game”,“% Win condi-
tion” and “% Lose Condition”. The first two trees
were build with nine clusters retrieved from the k-
means and 10 clusters from the Fuzzy Art. These
trees had a label accuracy of 100% and 92.6% re-
spectively. Although we got good accuracy values for
the trees, the overlap matrices of the clustering were
not ideal which means that these old features were
not the best indicators of performance.

Therefore, we then introduced the new features dis-
cussed earlier and along with just one of the old fea-
tures “Can Use”, we clustered the games again using
k-means and Fuzzy ART. The overlap matrices dis-
cussed earlier and shown in 2 and 3 correspond to
this case. Again, this cluster data was used as labels
along with the feature data to build two J48 deci-
sion trees. This time, the label accuracy of the trees
were: 91.46 % for K-means clusters and 95.122% for
the Fuzzy ART categories. The validation technique
used to build all the decisions tree was 10-fold cross-
validation. Figures 4 and 5 visualize the two afore-
mentioned decision trees trained on new features.

Class labels obtained from Accuracy

K-means 91.4634%
Fuzzy-ART 95.122%

Table 3: J48 run results for the full dataset using
10-fold cross-validation as test mode.

These decision trees serve as decision models for

Group 1 (k-means clusters)
Cluster Controller Dominance
0 asd952 6/13 (46%)
1 NovelTS 10/23 (43%)
2 asd952 6/12 (50%)
3 asd952 7/18 (39%)
4 asd952/NovelTS 8/16 (50%)

Table 4: Dominance analysis for k-means clusters.

the two hyper-agents. The hyper-agents created us-
ing k-means and Fuzzy-ART will be henceforth re-
ferred to as HA-KM and HA-ART respectively.

4.3 Finding the best controller for
each category

Through analysis of the performance of each con-
troller for each cluster, we can determine which con-
troller has the best performance (i.e. dominates) and
include this controller in our hyper-agent. We con-
sider a controller to be dominant if, for the games in
a given cluster, it is able to win each game more often
than the other controllers in the cluster.

Table 4 contains the results for the clusters re-
turned from the k-means clustering method. We can
see that the controller asd952 performs very well on
most of these clusters, losing to the controller Nov-
elTS in only one cluster and tying with NovelTS in
another.

Table 5 deals with the controllers’ performance on
the clusters from the Fuzzy ART method. In this
case, we can see that asd952 and NovelTS still have
a significant presence, as before, but now multiple
other controllers appear as well. This is most notable
in the last cluster for this group, where we have a
four-way tie for dominance. However, with only two
games in this cluster, a result like this is not entirely
surprising.

5 Experiments and Results

This section describes the experiment that we con-
ducted and the results that we received from this ex-
periment.

7



Figure 6: Heatmap representations of the agents (y-axis) performance vs single-player planning track discrete
physics games (x-axis). The games are sorted by their k-means clusters (top) or Fuzzy-ART categories
(bottom) created based on their features and also by the average performance. The numbers at the bottom
of each heatmap indicate the clusters. Darker cells correspond to better performance.

Group 2 (Fuzzy ART clusters)
Cluster Controller Dominance
0 NovelTS 7/11 (64%)
1 asd952 12/28 (43%)
2 asd952 7/14 (50%)
3 DoNothing/olets 2/6 (33%)
4 NovelTS 9/21 (43%)

5
asd592/sampleMCTS/
fraBOT/NovelTS

1/2 (50%)

Table 5: Dominance analysis for Fuzzy ART clusters.

We added a new java class to the GVGAI frame-
work called HyperDataCollector in which the hyper-
agent is implemented. The hyper-agent can be run in
three different ways by using three different methods
to decide which controller to assign to which game.
The first method is the random hyper-agent referred
to as HA-RA. HA-RA randomly chooses a controller
for each game from the controller portfolio and loads
it to play the game. The second method is the k-

means-based hyper-agent referred to as HA-KM. HA-
KM chooses a controller to play a game based on the
decision tree built using k-means clusters. The third
method is the Fuzzy-ART-based hyper-agent referred
to as HA-ART. HA-ART chooses a controller to play
a game based on the decision tree built using Fuzzy-
ART categories. The hyper-agent takes as input two
files and outputs a new file showing the performance
of every game. The two input files are feature data,
where the features of every game are listed, and game
data, where the performance of every controller for
every game is listed. Then based on the game fea-
tures of a game, the hyper-agent goes through the
decision tree and allocates the dominant controller of
the resulting category to play the game. This process
is illustrated in Figure 7.

The results show that as expected, HA-RA did not
perform as well as the other two hyper-agents. HA-
KM and HA-ART both performed significantly better
than HA-RA with an 76% and 80% increase in perfor-
mance respectively. HA-ART in turn performed 2%
better than HA-KM which does not seem significant.

8



In order to compare our agent to previous work, the
percentage improvement over the best singular agent
was also calculated. Our best agent improved 17.73%
over the best singular agent. In previous work that
used a similar method [14] the best agent only im-
proved 9.10% over the previous best agent. This can
indicate that our decision method is better, since it
improves more over its best singular agent. However,
other explanations are also possible (such as a better
average performance of the agents in the portfolio).
In Table 6 we listed the average performance of the
three hyper-agents across all 81 games. In Table 7 we
listed the increase in performance when we compare
the hyper-agents to each other.

Figure 7: Final program process workflow diagram.

Hyper-agent Average Performance

HA-RA 0.2737
HA-KM 0.4815
HA-ART 0.4933

Table 6: Average performance across 81 games of the
three hyper-agents

6 Conclusion

The purpose of this research was to find ways to im-
prove the hyper-agent approach to GVGP AI. We did

Comparison Performance increase

HA-RA vs. HA-KM 76%
HA-KM vs. HA-ART 2%
HA-RA vs. HA-ART 80%

Table 7: Performance comparison of the three hyper-
agents among each other

this by improving the categorization with two differ-
ent approaches: using a new algorithm, and introduc-
ing different features to cluster on. In this section we
will evaluate the results of these approaches, as well
as the hyper-agent performance overall.

As shown in section 5, the hyper-agents based on
categorization perform much better than a random
hyper-agent. HA-ART and HA-KM both are able to
win almost half of the games they play; an impressive
feat that not all humans can accomplish.

Whether the new clustering algorithm Fuzzy ART
was indeed better than clustering with k-means is
difficult to tell. The average performance between
the two agents has only minimal difference, which
would indicate that the two ways of clustering give
similar results. However, the clusters achieved with
Fuzzy ART seemed more distinct from one another,
and had more clear dominating agents, which would
indicate that Fuzzy ART is better suited to build
clusters for this kind of application. These results
are therefore inconclusive, but do not rule out Fuzzy
ART as the better suited clustering algorithm.

It is difficult to compare the performance of our
current agent to previous work, since the most sim-
ilar work does not give clear indications of perfor-
mance. Furthermore, we changed multiple aspects
of the hyper-agent at the same time, which makes
it difficult to isolate individual factors that influence
the performance. This was due to the fact that ear-
lier research was based on a different version of the
framework, and therefore it was not easily possible
to isolate variables, since the controllers used with
that framework are not compatible with the current
one. However, the performance of our agent seems
to be better that compared to earlier work. In pre-
vious work [14], the best hyper-agent improved on
the best agent by 9.10%, while our best-performing

9



hyper-agent improves 17.73% over the best perform-
ing singular agent in the portfolio. This suggests that
the decision making of our agent is better, since it
improves more over the best agent in its portfolio,
though other explanations for this difference in im-
provement in performance are possible.

7 Future work

There are multiple possibilities to expand or improve
on this research. A first avenue of further research
would be to collect the game features during run-
time, instead of collecting a database by hand. Aside
from the workload that collecting features by hand
causes for the researchers, using a database of fea-
tures for existing games means that the hyper-agent
we built is not able to play unknown games. It would
also not be able to compete in the GVGAI tourna-
ment, since it is using preexisting knowledge of the
games. A next step in making this agent a true
GVGP AI therefore would be to collect these features
automatically at run-time. This could be quite dif-
ficult; certain features, such as “Can Die”, can only
truly be found out when the game ends, and other
features, such as ’Is Puzzle’ have very fuzzy defini-
tions. However, we do believe that being able to de-
termine these features during game-play will serve to
improve the state of GVGP.

Another, related avenue of further research would
be to collect other features that are not observable in
the files, but that would be observable in the game,
such as size and the number of sprites. This has
already been done before [12], but combining these
two different kinds of features could serve to get a
very informative set of features.

The third possible approach would be to experi-
ment with using different agents at different levels of
the same game, since these levels could vary on cer-
tain properties which would make the separate levels
better suited for different agents. Currently, we are
not able to distinguish between levels of the same
game based on the features. However, with a new
method of feature collecting (such as collecting fea-
tures at run-time) the various levels could be discov-
ered to have variation for these features. In that case,

it would be relevant to investigate whether using dif-
ferent agents for these different levels would increase
performance.

References

[1] John Levine, Clare Congdon, Marc Ebner, Gra-
ham Kendall, Simon Lucas, Risto Miikkulainen,
Tom Schaul, and Tommy Thompson. General
video game playing. Dagstuhl-Followups, 6:77,
11 2013.

[2] GVGAI frameowrk. http://www.gvgai.net/

software.php, 2016.

[3] Diego Perez-Liebana, Spyridon Samothrakis, Ju-
lian Togelius, Tom Schaul and Simon Lucas.
General Video Game AI: Competition, Chal-
lenges and Opportunities. Proceedings of the
Thirtieth AAAI Conference on Artificial Intel-
ligence, 2016.

[4] Diego Perez, Spyridon Samothrakis, and Si-
mon Lucas. Knowledge-based fast evolutionary
MCTS for general video game playing. In 2014
IEEE Conference on Computational Intelligence
and Games, pages 1–8. IEEE, 2014.

[5] Levente Kocsis and Csaba Szepesvári. Ban-
dit based Monte-Carlo planning. In European
conference on machine learning, pages 282–293.
Springer, 2006.

[6] Rémi Coulom. Efficient selectivity and backup
operators in Monte-Carlo tree search. In In-
ternational conference on computers and games,
pages 72–83. Springer, 2006.

[7] Simon M Lucas, Jialin Liu, and Diego Perez-
Liebana. The n-tuple bandit evolutionary al-
gorithm for game agent optimisation. In 2018
IEEE Congress on Evolutionary Computation
(CEC), pages 1–9. IEEE, 2018.

[8] Edmund K Burke, Michel Gendreau, Matthew
Hyde, Graham Kendall, Gabriela Ochoa, Ender

10

http://www.gvgai.net/software.php
http://www.gvgai.net/software.php


Özcan, and Rong Qu. Hyper-heuristics: A sur-
vey of the state of the art. Journal of the Opera-
tional Research Society, 64(12):1695–1724, 2013.

[9] Diego Perez-Liebana, Spyridon Samothrakis, Ju-
lian Togelius, Tom Schaul, Simon M Lucas,
Adrien Couëtoux, Jerry Lee, Chong-U Lim, and
Tommy Thompson. The 2014 general video
game playing competition. IEEE Transactions
on Computational Intelligence and AI in Games,
8(3):229–243, 2015.

[10] Frederik Frydenberg, Kasper R Andersen, Se-
bastian Risi, and Julian Togelius. Investigating
MCTS modifications in general video game play-
ing. In 2015 IEEE Conference on Computational
Intelligence and Games (CIG), pages 107–113.
IEEE, 2015.

[11] Chun Yin Chu, Tomohiro Harada, and Ruck
Thawonmas. Biasing Monte-Carlo rollouts with
potential field in general video game playing.
In IPSJ Kansai-Branch Convention, pages 1–6,
2015.

[12] Andre Mendes, Julian Togelius, and Andy
Nealen. Hyper-heuristic general video game
playing. In 2016 IEEE Conference on Computa-
tional Intelligence and Games (CIG), pages 1–8.
IEEE, 2016.

[13] The GVG-AI competition. http://www.gvgai.
net/index.php. Accessed: 2020-01-15.

[14] Philip Bontrager, Ahmed Khalifa, Andre
Mendes, and Julian Togelius. Matching games
and algorithms for general video game playing.
In Twelfth Artificial Intelligence and Interactive
Digital Entertainment Conference, pages 122–
128, 2016.

[15] Ian H Witten and Eibe Frank. Data mining:
Practical machine learning tools and techniques
2nd edition. Morgan Kaufmann, San Francisco,
2005.

[16] Haipeng Guo and William H Hsu. A learning-
based algorithm selection meta-reasoner for the
real-time mpe problem. In Australasian Joint

Conference on Artificial Intelligence, pages 307–
318. Springer, 2004.

[17] Luca Pulina and Armando Tacchella. A multi-
engine solver for quantified boolean formulas.
In International Conference on Principles and
Practice of Constraint Programming, pages 574–
589. Springer, 2007.

[18] Gail A Carpenter, Stephen Grossberg, and
David B Rosen. Fuzzy ART: An adaptive res-
onance algorithm for rapid, stable classification
of analog patterns. In IJCNN-91-Seattle Inter-
national Joint Conference on Neural Networks,
volume 2, pages 411–416. IEEE, 1991.

11

http://www.gvgai.net/index.php
http://www.gvgai.net/index.php

	Introduction
	Motivation
	Previous work
	Methodology
	Data collection
	Game Categorization
	Clustering stage
	Building the decision model

	Finding the best controller for each category

	Experiments and Results
	Conclusion
	Future work

