
Evolutionary Robotics Simulator

Quintana Pelayo, Guillermo; Herbert, Attila; Kok, Levi
AI Master Students

Data Science and Knowledge Engineering
Maastricht University

g.quintanapelayo, a.herbert, ll.kok

@student.maastrichtuniversity.nl

March 2020

Abstract

Simulators play a critical role in robotics re-
search as one can test out new strategies and
algorithms with relative ease. In this paper,
we present a solution to the dust collecting
robot problem. To train the robot, we used
an evolutionary algorithm on a neural net-
work. We arrived at solutions that can navi-
gate without too many collisions and can col-
lect dust. This project is part of the Au-
tonomous Robotic Systems course from the
Faculty of Data Science and Knowledge En-
gineering Master program in Artificial Intelli-
gence of the Maastricht University.

Keywords: robot, simulator, evolutionary algo-
rithms, agent

1 Introduction

The main objective of this project is to create an
algorithm that can produce an agent that can suc-
cessfully navigate a map and collect as much dust as
possible. To train the agent, we utilize an evolution-
ary algorithm to select and evolve the weights of its
neural network. Agents were tested on a variety of
environments with different complexity.
Secondary objectives focus on improving the naviga-
tion of the agent, such as minimizing the number of
collisions with the walls and increasing the speed of
the robot.

2 Implementation

This section contains all the steps followed to build
the simulator and the agent. From the very beginning
we tried to maintain a structured implementation so
that it’s easy to add new features in the future and
also aimed to make the simulator as light as possible
when it comes to CPU resource consumption.

The language used for this project is Python 3.7
with the help of the library pygame [1]. This module
was only used for window management, user input
and to draw the graphics. 1

2.1 Robot and Dust

The robot itself is visualised by a white circle and
a black line that represents the directions that the
robot is facing. It has two independent wheels and
12 sensors (see section 2.2). The Robot class contains
the whole model of the robot, including movement
and collision handling.

The data on the dust consists of a Boolean matrix
that represents whether it has a dust particle or not.
Each dust particle encloses a space of 10 by 10 pixels.
We compute each dust particle is located within the
circular area of the robot, by the following equation

(xdust − xrobot)2 + (ydust − yrobot)2 ≤ r2robot

These dust particles are then visualised as grey cir-
cles. Each frame, the dust particle’s collision with the
robot are checked. The first part of our fitness func-
tion f(agent) is the total sum of the boolean matrix,
which is equal to the amount of dust particles re-
maining, Ndust. The second part is a penalty factor:

1Code can be found at https://github.com/GuilleQP/

ARS_assignments

1

https://github.com/GuilleQP/ARS_assignments
https://github.com/GuilleQP/ARS_assignments


the number of times the robot collides with the wall,
Ncollisions, times 20.

f(agent) =

n∑
Ndust + 20

n∑
Ncollisions

Therefore, for our fitness function holds less is bet-
ter.

2.2 Sensors

The robot has 12 distance sensors with a 30◦angle
between them. Their maximum range is 200 pixels.
As we will observe later, when a wall is detected by
a sensor, it changes its color from blue to orange and
updates the ending point to match the intersection
with the wall so that the sensor line doesn’t overlap
the obstacles in the map. Furthermore, every sensor
displays a label with the current distance to the
closest obstacle within the range.

2.3 Distance Algorithm

The algorithm that determines the distance for each
sensor works as follows. Each wall is a line segment
consisting of two X,Y coordinates (the edges). We
construct a sensor as another line segment. We do
this by taking the robots center position as the first
coordinate, and the second coordinate on the sensors
line, determined by the sensor angle.

xsensorpoint = xcenter + cos(θ)

ysensorpoint = ycenter + sin(θ)

From these two points we can construct a line seg-
ment for the sensor. We now have a line segment for
the wall and the sensor. We can compute the inter-
section of two line segments using Cramer’s rule [2]:
If we have two line segments

a1x+ b1y = c1, a2x+ b2y = c2

and these lines are not parallel

a1b2 − a2b1 6= 0

Then the intersection points are computed as

xs =
c1b2 − c2b1
a1b2 − a2b1

, ys =
a1c2 − a2c1
a1b2 − a2b1

.

We now have the point at which the sensor seg-
ment intersects with the wall. We now compute the
euclidean distance between the robot and the inter-
section to find the sensor distance value. We have
to take two things into account: there can be an in-
tersection with multiple walls, and the sensor’s line
segment has no direction, it can thus also have an
intersection in the opposite direction. We solve the
first issue by looping over all walls, and returning the
smallest distance value. We solve the second issue by
checking if the found point of intersection is in the
same direction as the point of the sensor from the
viewpoint of the robot’s center.

2.4 Collision detection

Collisions are handled in a relatively straightforward
manner. If the robot is close to a wall, collision man-
agement is started. If on the next timestep, the robot
would collide with a wall, we modify the timestep so
it can approach the wall and hit exactly the edge.
After a wall is hit, we connect the wall to the robot
so it can move along the wall. In case the robot is
connected to two walls, it means that it is at a cor-
ner. Corners are handled a bit differently, since the
robot is either inside or outside of the corner. In the
inside case, the robot’s velocity is set to 0 if it isn’t
moving away from either wall. If it is moving away,
that wall is removed. As mentioned before, we count
the number of collisions the agent has, because this
is a penalty factor to our fitness function. In the out-
side case, the robot’s velocity is not modified until we
are sure which way the robot can get away from the
corner. In case a direction is found, the robot moves
away.

We chose this kind of collision handling because
of time restrictions. Although it doesn’t utilize any
physical rules, it works well for the simulation pur-
poses.

2



2.5 Maps

All our maps have been designed with a width of 700
px and a height of 500 px. Four different maps have
been designed and implemented for this simulator.
The framework is built in a way that it is fairly easy
to add new maps into it. Each map is saved in a text
file that includes the edges of every wall. Figure 1
provides an overview of these maps. The maps are
designed to have a variety in complexity, open space,
corners and objects. This provides the agents with a
variety of challenges. For example, an open room can
be easily explored without collisions but a complex
maze requires turns in every direction, going straight
and being able to explore.

Figure 1: Four maps implemented into the simula-
tor (clockwise, starting left top): Rectangle, Double
Rectangle, Room and Maze. Gray and dark blue pix-
els correspond to floor with and without dust respec-
tively. This robot was manually driven.

2.6 Neural Network

We implemented a neural network consisting of the
values of the 12 distance sensors, the speed of left
and right wheel of the robot, and the delayed previ-
ous activation values of the hidden layer that act as
the memory. We decided upon one hidden layer with
6 nodes. We used the activation function Tanh(x),
as it’s output ranges within (-1,1), meaning that the
robot can have the wheels go backwards and steer
quickly.

The weights were randomly initialised by an uniform
distribution between a range between (-0.7, 0.7). The
neural network algorithm was coded by ourselves us-
ing Numpy.

2.7 Evolutionary Algorithms

Our evolutionary algorithm is quite simple. We use
mutation with uniform distribution between (-0.5,
0.5), scaled with a mutation factor. In the exper-
iments, we used different mutation factors ranging
from 0.01 to 0.3.
We tried using crossover mutations between the
weights of the neural networks of the different agents.
This type of mutation performed worse. See section
3.1.
One extra feature we implemented was an inflated
starting population. We noticed that robot’s per-
formance can be highly variable, and that the initial
starting agent is very influential to the end result. We
therefore start with 10 times the normal population,
select the best starting point and start the evolution
from there.

2.8 Memory

As previously discussed, we implement a memory by
feeding back the activations of the hidden layer into
the input layer with a delay ∆t. We notice that
the usage of this memory has little impact on the
results. We tested the ∆t for 0, 10, 25, 50, 100
and 200 timesteps. The longer the delay, the worse
the results. We ended up settling on a delay of 50
timesteps, which is equal to 0.8 seconds.

2.9 Extra features

During the implementation of this simulator, we tried
to introduce two improvements to our codebase. The
first was multi-threading computation, this ended up
being as slow as the sequential running that we were
already using. Secondly we tried randomization of
the starting position for every map for every agent.
However this introduced too much complexity to our
training. After these tests we decided to stay with the

3



sequential training and one fixed starting position for
every map.

3 Experiments and results

Figure 2 shows an example fitness function of an
agent over time. Ideally, we want to make this curve
as straight down as possible, which means that the
robot collects as much dust as efficiently as possible.

Figure 2: Dust cleaning history. The y axis represents
the amount of dust remaining on the floor and the y
axis are the time steps (frames).

Figure 3: Development of average and best score on
the left, and development of all the agent population
on the right. These agents were trained on the maze
map.

We tried developing a well performing agent by
first training it on a simple map (double rectangle),
taking the best performing agent and retraining it on
a more difficult map (maze). This is similar to how a
human would learn, starting easy and then increasing

the difficulty. While the agent did perform well on
the double rectangle, it did not manage to convert on
the maze. It could make right turns very well, but
never came across left turns on the double rectangle.
It never managed to learn left turns well on the maze.
The evaluation function over time are in the figure
below.

Figure 4: Development of average and best score for
an agent first trained on the double rectangle map,
and then on the maze. Although the agent did per-
form well on the double rectangle, it did not convert
on the maze. Neither a high nor low mutation rate
solved this problem.

3.1 Crossover

We experimented with creating mutations through
the crossover techniques One point, Uniform and
Arithmetic. However, the resulting agents were
under-performing compared to the evolutionary al-
gorithm using the simpler random weight mutations.
The agents did not converge well. It appeared the
gene pool became too similar too quickly. We did
not manage to improve these results and therefore
did not use crossover techniques. We believe it is hard
to meaningfully represent neural network’ weights as
genes, which means crossovers on neural networks
have low likelihood of producing better results than
normal mutation. The code from this experiment can
be found on the github branch newevolution.

4



3.2 Convergence

A good example of the interesting solutions that evo-
lutionary algorithms can find can be seen in figure 5.
This agent closely hugs the wall without touching it,
thus avoiding collision. After 3000 frames this agent
is capable of cleaning more than 72% of the available
dust (see figure 6), it fails at cleaning the dust at the
four corners of the map.

Figure 5: Agents performance for iteration 1, 10 and
20. Pool of 20 agents. Mutation rate 0.3.

Figure 6: This agent performs well on the double
rectangle map. It learns to hug the walls, but does
not touch them. We tried taking this agent and re-
training it on the maze. It would then need to learn
to take left turns as well.

This next agent (figure 7) stops in a corner and
doesn’t know how to continue from there. This par-
ticular room was hard for the agents to navigate even
after 100 evolution iterations.

Figure 7: Agents performance for iteration 1 and 20.
Pool of 40 agents. Mutation rate 0.4.

4 Conclusion

To conclude, we implemented a simulator capable of
simulating a dust-collecting robot. We designed sev-
eral testing rooms and implemented two different evo-
lutionary algorithms to develop agents. Our results
and observations lead us to believe that an evolu-
tionary algorithm is not necessarily the most efficient
way to develop agents, however, it’s diversity is re-
markable. Most other techniques require specific loss
or fitness functions for every situation, but with our
evolutionary algorithm, we could train agents on any
of the four rooms without any changes to the algo-
rithm or the fitness function.
One drawback of evolutionary algorithms is their
resource-dependency. We couldn’t afford to run
a thousand agents parallel, so our agents easily
got stuck at some points and their performance
plateaued. This problem is however present in all
optimization algorithms. Genetic algorithms require
huge populations to avoid this problem, which in turn
require copious resources.

References

[1] Pygame library. https://www.pygame.org/

wiki/about, 2020.

[2] V. Dvortsov. Cramer’s rule. Atomization and
Sprays - ATOMIZATION SPRAYS, c, 01 2006.

5

https://www.pygame.org/wiki/about
https://www.pygame.org/wiki/about

	Introduction
	Implementation
	Robot and Dust
	Sensors
	Distance Algorithm
	Collision detection
	Maps
	Neural Network
	Evolutionary Algorithms
	Memory
	Extra features

	Experiments and results
	Crossover
	Convergence

	Conclusion

